Towards the imaging of Weibel–Palade body biogenesis by serial block face-scanning electron microscopy

نویسندگان

  • MJ Mourik
  • FGA Faas
  • H Zimmermann
  • J Eikenboom
  • AJ Koster
چکیده

Electron microscopy is used in biological research to study the ultrastructure at high resolution to obtain information on specific cellular processes. Serial block face-scanning electron microscopy is a relatively novel electron microscopy imaging technique that allows three-dimensional characterization of the ultrastructure in both tissues and cells by measuring volumes of thousands of cubic micrometres yet at nanometre-scale resolution. In the scanning electron microscope, repeatedly an image is acquired followed by the removal of a thin layer resin embedded biological material by either a microtome or a focused ion beam. In this way, each recorded image contains novel structural information which can be used for three-dimensional analysis. Here, we explore focused ion beam facilitated serial block face-scanning electron microscopy to study the endothelial cell-specific storage organelles, the Weibel-Palade bodies, during their biogenesis at the Golgi apparatus. Weibel-Palade bodies predominantly contain the coagulation protein Von Willebrand factor which is secreted by the cell upon vascular damage. Using focused ion beam facilitated serial block face-scanning electron microscopy we show that the technique has the sensitivity to clearly reveal subcellular details like mitochondrial cristae and small vesicles with a diameter of about 50 nm. Also, we reveal numerous associations between Weibel-Palade bodies and Golgi stacks which became conceivable in large-scale three-dimensional data. We demonstrate that serial block face-scanning electron microscopy is a promising tool that offers an alternative for electron tomography to study subcellular organelle interactions in the context of a complete cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Content delivery to newly forming Weibel-Palade bodies is facilitated by multiple connections with the Golgi apparatus.

Weibel-Palade bodies (WPBs) comprise an on-demand storage organelle within vascular endothelial cells. It's major component, the hemostatic protein von Willebrand factor (VWF), is known to assemble into long helical tubules and is hypothesized to drive WPB biogenesis. However, electron micrographs of WPBs at the Golgi apparatus show that these forming WPBs contain very little tubular VWF compar...

متن کامل

Three dimensional electron microscopy of cellular organelles by serial block face SEM and ET

Novel serial imaging methods using scanning electron microscopy may be used for 3D morphological studies of plastic embedded biological specimens. Serial block face SEM has already proven an undisputable position in 3D-EM studies of tissues, but it has a lot of potential in cell biology applications too. Electron tomography can be used to complement those studies where higher resolution is need...

متن کامل

Three-dimensional architecture of podocytes revealed by block-face scanning electron microscopy

Block-face imaging is a scanning electron microscopic technique which enables easier acquisition of serial ultrastructural images directly from the surface of resin-embedded biological samples with a similar quality to transmission electron micrographs. In the present study, we analyzed the three-dimensional architecture of podocytes using serial block-face imaging. It was previously believed t...

متن کامل

Re-establishment of VWF-dependent Weibel-Palade bodies in VWD endothelial cells.

Type 3 von Willebrand disease (VWD) is a severe hemorrhagic defect in humans. We now identify the homozygous mutation in the Chapel Hill strain of canine type 3 VWD that results in premature termination of von Willebrand factor (VWF) protein synthesis. We cultured endothelium from VWD and normal dogs to study intracellular VWF trafficking and Weibel-Palade body formation. Weibel-Palade bodies c...

متن کامل

High-pressure freezing provides insights into Weibel-Palade body biogenesis.

The Weibel-Palade bodies (WPBs) of endothelial cells play an important role in haemostasis and the initiation of inflammation, yet their biogenesis is poorly understood. Tubulation of their major content protein, von Willebrand factor (VWF), is crucial to WPB function, and so we investigated further the relationship between VWF tubule formation and WPB formation in human umbilical vein endothel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 259  شماره 

صفحات  -

تاریخ انتشار 2015